

Refactoring PostgreSQL databases

A note of warning

This uses advanced PostgreSQL features
and is not portable to other databases.

Rules

● PostgreSQL feature allowing you to hack the
query planner

● Rules are dangerous
● The canonical gun comparison:

– C lets you shoot yourself in the foot

– C++ lets you blow your whole foot away

– Rules will take out the town

● Be very, very careful when writing rules.

Here's an example
CREATE RULE foo AS

ON INSERT TO my_table
DO ALSO
INSERT INTO my_table_log NEW.*;

INSERT INTO my_table VALUES (random());

OOP

● OOP is a good idea.
– As long as you apply it to code.

● Data is not object-oriented.
● Data is (or should be) described by the

relational calculus.
● What happens when your database is designed

by people who have drunk the OO koolaid?

In my case

● The better bits
– 40 tables with the same structure.

– One table per class.

● The worse bits.
● 160 tables with a very similar structure. And a

table to dynamically generate SQL for these
tables.

● Application development is stalled (including
wanted features)!

CREATE TABLE domcno_cns (CREATE TABLE dombiz_cns (
orderid integer, orderid integer,
ns varchar(255), ns varchar(255),
ip varchar(50), ip varchar(50),
creationdt integer, creationdt integer,
timestamp timestamp timestamp timestamp

););

Interesting data in the table:
IP addresses containing ',' instead of '.'
IP addresses containing 555 or 999
Multiple IP addresses in the same line
IPv6 addresses. The funny thing? We didn't even officially support v6 till this year

Fixing that one

● There's a rather major constraint
– Uptime

● Actual change needed code fixing (including
validation code).

● Writing the table design was easy.
– Implementing it was more difficult

Actually implementing the change
-- Create the table
CREATE TABLE domain_cns (

orderid integer,
nameserver text,
ip inet,
creation_time timestamptz default now(),
last_modified_on timestamptz default now(),
CONSTRAINT domain_cns_pk

PRIMARY KEY (orderid, nameserver, ip),
CONSTRAINT domain_cns

FOREIGN KEY (orderid)
REFERENCES domorder(orderid)

);

-- Create a function which throws a general exception and a custom message
-- This will trickle up to the end user
CREATE FUNCTION fail(text) RETURNS text AS $$
BEGIN

RAISE EXCEPTION '%', $1;
END;
$$ LANGUAGE 'plpgsql';

-- Define a trigger to ensure that last_modified_time is set since
-- this table may be modified by hand
CREATE OR REPLACE FUNCTION set_last_modification_time() RETURNS

trigger AS $$
BEGIN

 NEW.last_modified_time = now();
 RETURN NEW;
END;
$$ LANGUAGE 'plpgsql';

-- And apply the trigger
CREATE TRIGGER fix_modification_time
 BEFORE UPDATE ON domain_cns
 FOR EACH ROW
 EXECUTE PROCEDURE set_last_modification_time();

-- We need to ensure that data in this table stays unchanged while we merge the tables
-- But since this table is read fairly often, an exclusive lock will block the application
-- leading to timeouts
-- We use rules to throw errors on any operations which will modify data
-- This isn't quite an exclusive lock since DDL would go right through, but for our purposes,
-- it's good enough.

CREATE RULE dombiz_cns_insert AS
ON INSERT TO dombiz_cns

DO INSTEAD SELECT fail('Database maintainance in progress. Try again later');

CREATE RULE dombiz_cns_update AS
ON UPDATE TO dombiz_cns

DO INSTEAD SELECT fail('Database maintainance in progress. Try again later');

CREATE RULE dombiz_cns_delete AS
ON DELETE TO dombiz_cns

DO INSTEAD SELECT fail('Database maintainance in progress. Try again later');

BEGIN;

-- Copy the data into the actual table
SELECT INTO domain_cns (orderid, nameserver, ip, creation_time, last_modified_on)

SELECT orderid, ns, ip::inet, to_timestamp(creationdt), “timestamp”
FROM dombiz_cns;

-- Now get rid of the old table and replace it with an updatable view
DROP TABLE dombiz_cns;

-- In theory this should be a join and have a where clause to limit the search
-- results. However, for my use case, adding more data doesn't matter
-- since the select query will always specify the orderid.

CREATE VIEW dombiz_cns AS
SELECT orderid, nameserver ASV ns, ip, creation_date, last_modified_time

FROM domain_cns;

-- These rules only work when the action is performed on a single row.
CREATE RULE dombiz_cns_insert AS

ON INSERT TO dombiz_cns DOINSTEAD
INSERT INTO domain_cns (orderid, nameserver, ip)

VALUES (NEW.orderid, NEW.ns, NEW.ip);

CREATE RULE dombiz_cns_update AS
ON UPDATE TO dombiz_cns DO INSTEAD

UPDATE domain_cns SET
orderid = NEW.orderid,
nameserver = NEW.nameserver,
ip = NEW.ip::inet

WHERE orderid = OLD.orderid
AND nameserver = OLD.nameserver
AND ip = OLD.ip;

CREATE RULE dombiz_cns_delete AS
ON DELETE TO dombiz_cns DO INSTEAD

DELETE FROM domain_cns
WHERE orderid = OLD.orderid
AND nameserver = OLD.ns
AND ip = OLD.ip;

COMMIT;

Partitioning

Partitioning is good

● When your tables are log tables
– Logs need archival

– Partitioning saves the trouble of data deletion
● Just drop the partition

● When you have a very large number of rows
– Faster queries

Partitioning a logging table

● Create a new table with the appropriate
structure and permissions

● Create an inheritance hierarchy under this table
● Apply a trigger to the parent table which inserts

into the appropriate child table and then returns
NULL so that no row is actually inserted into the
parent

● Apply a rule to the old table which rewrites
insert statements so that insertion happens on
the new table

How to ...

● Move the old data over into the new table.
● In a transaction, drop the existing table and

create a view with a rule redirecting inserts
● Write a small script which creates a new

inheritance table every partitioning period and
updates the trigger procedure to send data to
the new table(s), and then put it into a cron job.

● Archive old tables every so often.

